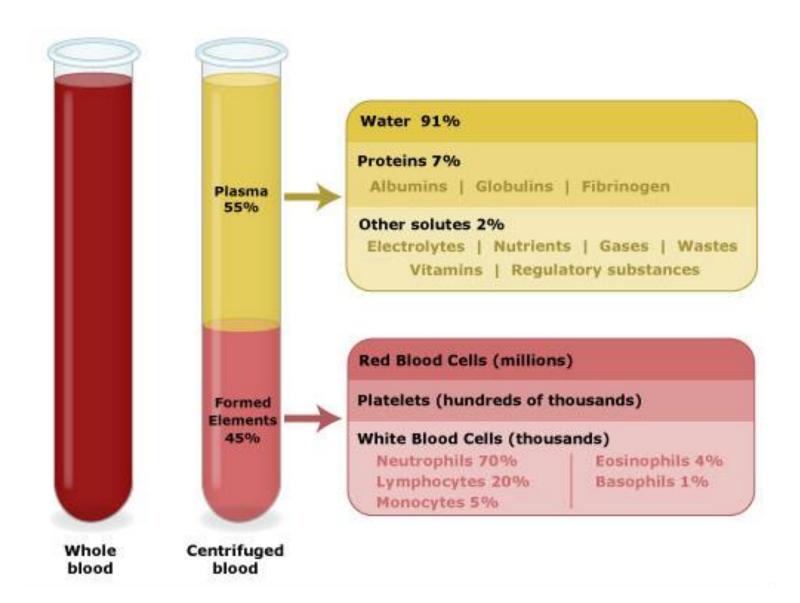
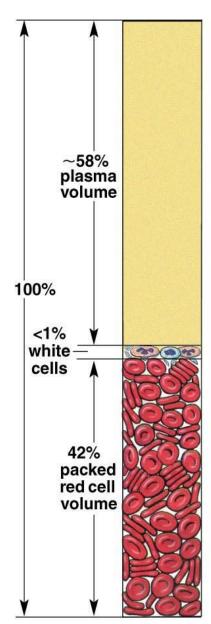

The Cardiovascular System Part -3-

Ms. Mais Abdelhaq


Composition of Blood

- Blood is the life-sustaining transport vehicle of the cardiovascular system
- It is composed of liquid plasma and formed elements
- Formed elements include:
 - Erythrocytes, or red blood cells (RBCs)
 - Leukocytes, or white blood cells (WBCs)
 - Platelets

Components of Whole Blood



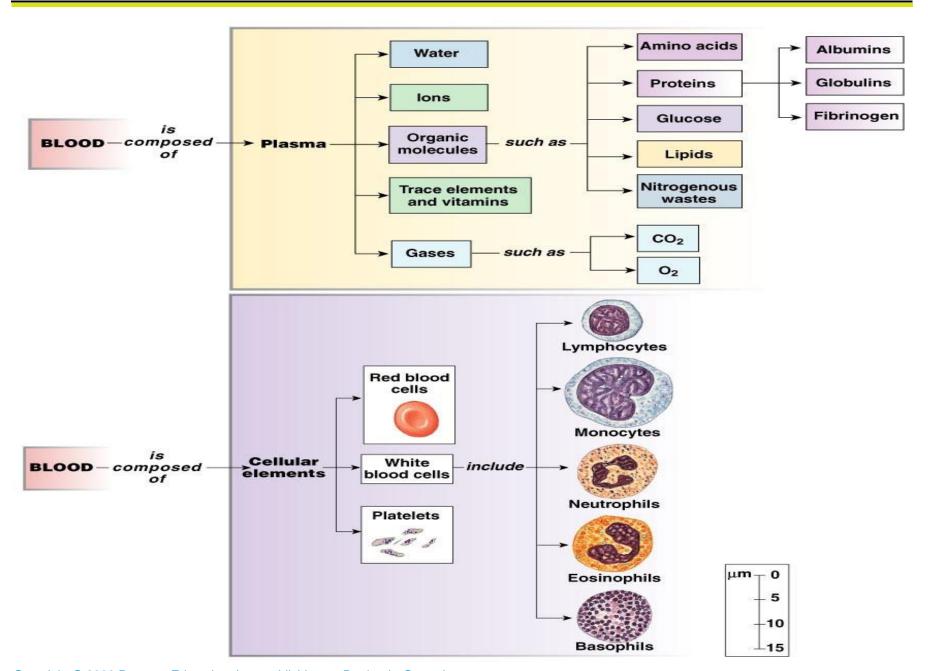
Composition of Blood

Physical Characteristics and Volume

- Blood is a sticky, opaque fluid with a metallic taste
- Color varies from scarlet to dark red
- The pH of blood is 7.35–7.45
- Temperature is 38°C
- Blood accounts for approximately 8% of body weight
- Average volume: 5–6 L for males, and 4–5 L for females

	Males	Females	
Hematocrit	40–54%	37–47%	
Hemoglobin (g Hb/dL* blood)	14–17	12–16	
Red cell count (cells/μL)	4.5–6.5 x 10 ⁶	3.9–5.6 x 10 ⁶	
Total white cell count (cells/μL)	4–11 x 10 ³	4–11 x 10 ³	
Differential white cell count			
Neutrophils	50-70%	50-70%	
Eosinophils	1-4%	1-4%	
Basophils	<1%	<1%	
Lymphocytes	20–40%	20–40%	
Monocytes	2–8%	2-8%	
Platelets (per μL)	200-500 x 10 ³	200-500 x 10 ³	

Functions of Blood


- Blood performs a number of functions dealing with:
 - Substance distribution
 - Regulation of blood levels of particular substances
 - Body protection

Distribution

- Blood transports:
 - Oxygen from the lungs and nutrients from the digestive tract
 - Metabolic wastes from cells to the lungs and kidneys for elimination
 - Hormones from endocrine glands to target organs

Regulation

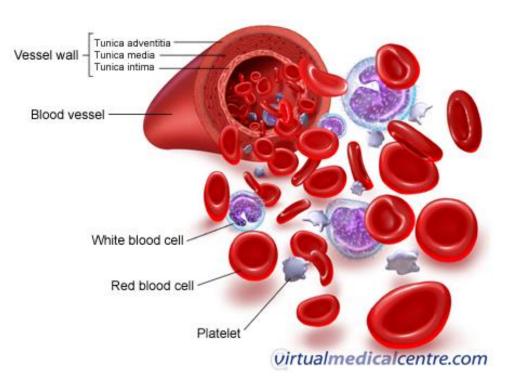
- Blood maintains:
 - Appropriate body temperature by absorbing and distributing heat
 - Normal pH in body tissues using buffer systems
 - Adequate fluid volume in the circulatory system

Copyright © 2006 Peorsopy Falgration 12007 biplies are Carried in Carried in

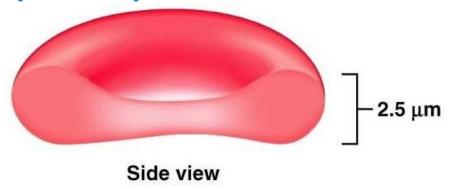
Protection

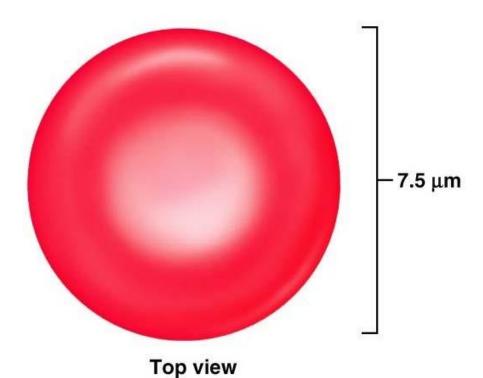
- Blood prevents blood loss by:
 - Activating plasma proteins and platelets
 - Initiating clot formation when a vessel is broken
- Blood prevents infection by:
 - Synthesizing and utilizing antibodies
 - Activating complement proteins
 - Activating WBCs to defend the body against foreign invaders

Blood Plasma

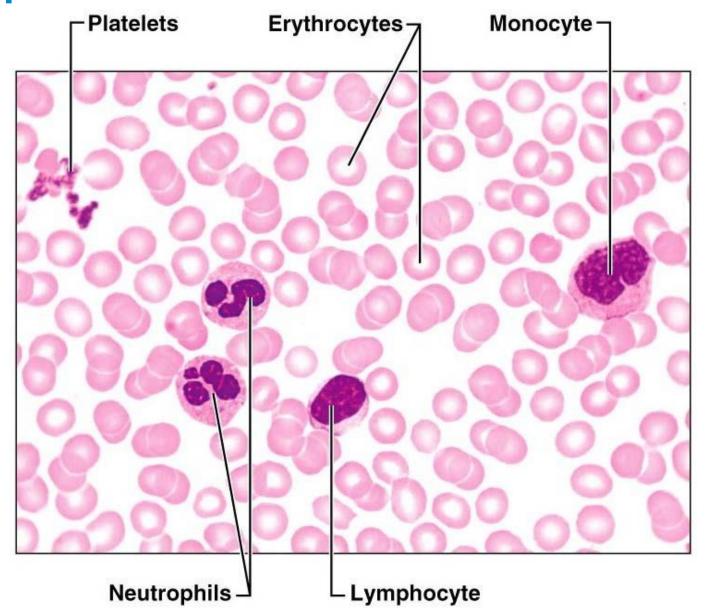

- Blood plasma contains over 100 solutes, including:
 - Proteins albumin, globulins, clotting proteins, and others
 - Lactic acid, urea, creatinine
 - Organic nutrients glucose, carbohydrates, amino acids
 - Electrolytes sodium, potassium, calcium, chloride, bicarbonate
 - Respiratory gases oxygen and carbon dioxide

Formed Elements


- Erythrocytes, leukocytes, and platelets make up the formed elements
 - Only WBCs are complete cells
 - RBCs have no nuclei or organelles, and platelets are just cell fragments
- Most formed elements survive in the bloodstream for only a few days
- Most blood cells do not divide but are renewed by cells in bone marrow


Blood Cells

- Erythrocytes (RBCs)
 - Known as red blood cells (RBC)
 - Tiny biconcave-shaped disks
 - Thinner in center than around edges
 - No nucleus in mature red blood cell
 - Main component = hemoglobin
 - Primary function = transport oxygen to cells of body



Erythrocytes (RBCs)

Components of Whole Blood

Regulation and Requirements for Erythropoiesis

- Circulating erythrocytes the number remains constant and reflects a balance between RBC production and destruction
 - Too few RBCs leads to tissue hypoxia
 - Too many RBCs causes undesirable blood viscosity
- Erythropoiesis is hormonally controlled and depends on adequate supplies of iron, amino acids, and B vitamins

Hormonal Control of Erythropoiesis

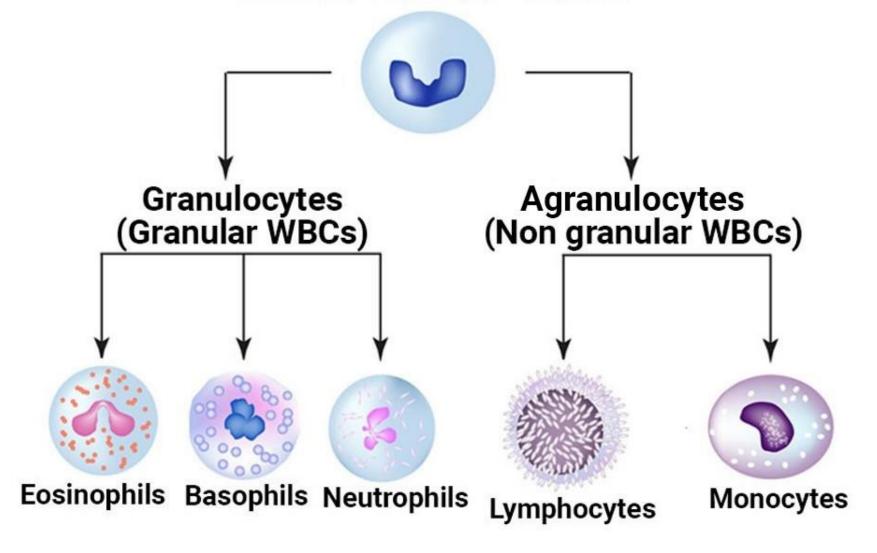
- Erythropoietin (EPO) release by the kidneys is triggered by:
 - Hypoxia due to decreased RBCs
 - Decreased oxygen availability
 - Increased tissue demand for oxygen
- Enhanced erythropoiesis increases the:
 - RBC count in circulating blood
 - Oxygen carrying ability of the blood

Dietary Requirements of Erythropoiesis

- Erythropoiesis requires:
 - Proteins, lipids, and carbohydrates
 - Iron, vitamin B_{12} , and folic acid
- The body stores iron in Hb (65%), the liver, spleen, and bone marrow
- Intracellular iron is stored in protein-iron complexes such as ferritin and hemosiderin
- Circulating iron is loosely bound to the transport protein transferrin

Fate and Destruction of Erythrocytes

- The life span of an erythrocyte is 100–120 days
- Old RBCs become rigid and fragile, and their Hb begins to degenerate
- Dying RBCs are engulfed by macrophages
- Heme and globin are separated and the iron is salvaged for reuse


Fate and Destruction of Erythrocytes

- Heme is degraded to a yellow pigment called bilirubin
- The liver secretes bilirubin into the intestines as bile
- The intestines metabolize it into urobilinogen
- This degraded pigment leaves the body in feces, in a pigment called stercobilin

Bacterial or Viral infection from CBC

- Neutrophils are by far the most common form of white blood cell that you have in your body (pus is simply dead neutrophils).
- Neutrophils are infection fighters that increase during bacterial infections (neutrophils are also known as granulocytes)
- Lymphocytes, on the other hand, can increase in cases of viral infections.

White Blood Cells

Erythrocyte Disorders

- Anemia blood has abnormally low oxygencarrying capacity
 - It is a symptom rather than a disease itself
 - Blood oxygen levels cannot support normal metabolism
 - Signs/symptoms include fatigue, paleness, shortness of breath, and chills

Anemia: Insufficient Erythrocytes

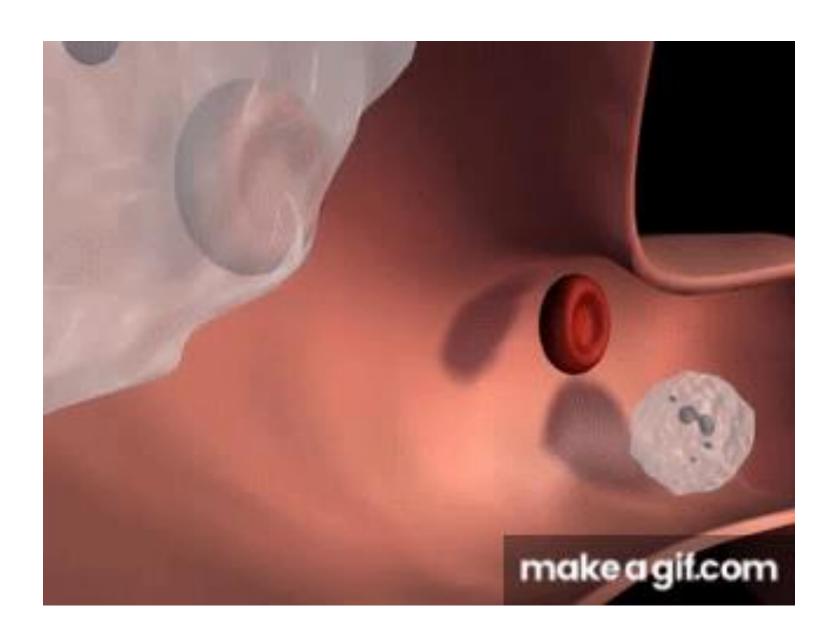
- Hemorrhagic anemia result of acute or chronic loss of blood
- Hemolytic anemia prematurely ruptured RBCs
- Aplastic anemia destruction or inhibition of red bone marrow

Anemia: Decreased Hemoglobin Content

- Iron-deficiency anemia results from:
 - A secondary result of hemorrhagic anemia
 - Inadequate intake of iron-containing foods
 - Impaired iron absorption
- Pernicious anemia results from:
 - Deficiency of vitamin B₁₂
 - Lack of intrinsic factor needed for absorption of B₁₂
- Treatment is intramuscular injection of B₁₂;
 application of Nascobal

White Blood cells (WBC)

Granulocytes:

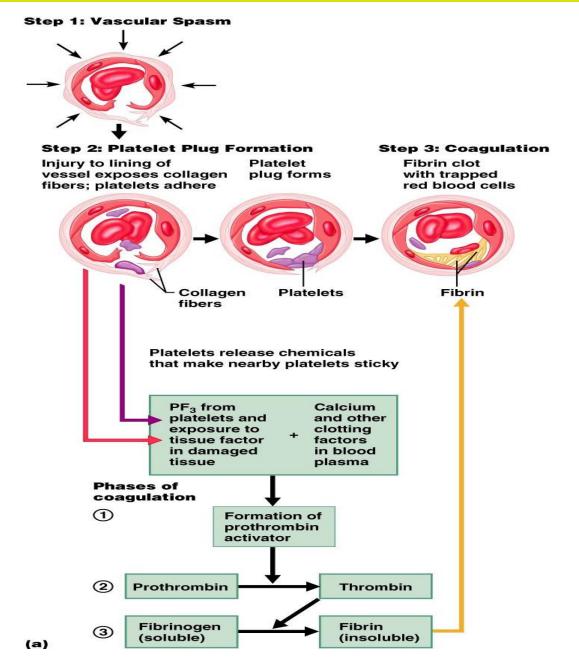

- Neutrophils (active phagocytes)
- 2. Eosinophils (kill parasitic worms, play a complex role in allergy attack).
- Basophils (release histamine, at sites of inflammation; contain heparin).

Agranulocytes:

- Lymphocytes (B and T lymphocytes, fight tumors and viruses via cell attack)
- 2. Monocytes (active phagocytes that become macrophages in the tissues; increase in number during infections such TB)

White Blood cells (WBC)

- Are able to slip into and out of the blood vessels.
 (diapedesis).
- Can locate area of tissue damage and infection in the body by responding to certain chemicals that diffuse from the damaged cells (positive chemotaxis)


Platelets

- Platelets are fragments of megakaryocytes with a bluestaining outer region and a purple granular center
- Their granules contain serotonin, Ca²⁺, enzymes, ADP, and platelet-derived growth factor (PDGF)
- Platelets function in the clotting mechanism by forming a temporary plug that helps seal breaks in blood vessels
- Platelets not involved in clotting are kept inactive by NO and prostacyclin

Hemostasis

- A series of reactions for stoppage of bleeding
- During hemostasis, three phases occur in rapid sequence
 - Vascular spasms immediate vasoconstriction in response to injury
 - Platelet plug formation
 - Coagulation (blood clotting)

Coagulation

Hemostasis Disorders: Thromboembolytic Conditions

- Thrombus a clot that develops and persists in an unbroken blood vessel
 - Thrombi can block circulation, resulting in tissue death
 - Coronary thrombosis thrombus in blood vessel of the heart

Hemostasis Disorders: Thromboembolytic Conditions

- Embolus a thrombus freely floating in the blood stream
 - Pulmonary emboli can impair the ability of the body to obtain oxygen
 - Cerebral emboli can cause strokes

Prevention of Undesirable Clots

- Substances used to prevent undesirable clots:
 - Aspirin an antiprostaglandin that inhibits thromboxane A_2
 - Heparin an anticoagulant used clinically for preand postoperative cardiac care
 - Warfarin used for those prone to atrial fibrillation

Human Blood Groups

- RBC membranes have glycoprotein antigens on their external surfaces
- These antigens are:
 - Unique to the individual
 - Recognized as foreign if transfused into another individual
- Presence or absence of these antigens is used to classify blood groups

ABO Blood Groups

- The ABO blood groups consists of:
 - Two antigens (A and B) on the surface of the RBCs
 - Two antibodies in the plasma (anti-A and anti-B)

Blood Types

- Blood Type A
 - Has A-antigen present on RBC
 - Has Anti-B antibody present in plasma
- Blood Type B
 - Has B-antigen present on RBC
 - Has Anti-A antibody present in plasma

Blood Types

- Blood Type AB
 - Has AB-antigens present on RBC
 - Has <u>no</u> antibodies present in plasma
- Blood Type O
 - Has <u>no</u> antigens present on RBC
 - Has both anti-A and Anti-B antibodies present in plasma

ABO Blood Groups

TABLE	17.4 A	BO Bloo	d Group	os				
BLOOD GROUP	FREQ!	UENCY (% BLACK	U.S. POP	ULATION) NATIVE AMERICAN	RBC ANTIGENS (AGGLUTINOGI	ENS) ILLUSTRATION	PLASMA ANTIBODIES (AGGLUTININS)	BLOOD THAT CAN BE RECEIVED
АВ	4	4	5	<1	АВ	AB	None	A, B, AB, O (Universal recipient)
В	11	20	27	4	В	Anti-A	Anti-A (a)	В, О
Α	40	27	28	16	Α ,	Anti-B	Anti-B (b)	Α, Ο
0	45	49	40	79		anti-B	Anti-A (a) Anti-B (b)	O (Universal donor)

Rh Blood Groups

- There are eight different Rh agglutinogens, three of which (C, D, and E) are common
- Presence of the Rh agglutinogens on RBCs is indicated as Rh⁺
- Anti-Rh antibodies are not spontaneously formed in Rh⁻ individuals
- However, if an Rh⁻ individual receives Rh⁺ blood, anti-Rh antibodies form
- A second exposure to Rh⁺ blood will result in a typical transfusion reaction

Thank You